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Geometric Transformations 
 
Transformations like translation, rotation, scaling, mirroring etc. of objects within a given coordinate system 
or between coordinate systems are called geometric transformations. In the following, we will describe the 
necessary transformation rules for points only. From this, all other objects can then be transformed easily by 
transforming all vertices of these objects. 
 

█ Simple 2D Transformations 
 

Translation 
The translation of a point (x,y) by some vector (tx,ty) results in the transformed point  

(x´,y´) = (x+tx,y+ty)  . 
 
Rotation 
When rotating an object around the point of origin by an angle θ, the point (x,y) ends up at             

(x´,y´) = (x·cosθ – y·sinθ, x·sinθ + y·cosθ). 
 
Scaling (magnification or miniaturization)  
When scaling an object from the point of origin by the factor s, the point (x,y) is mapped to  
     (x´,y´) = (s·x, s·y). 
If we use different scaling factors sx and sy in x- respectively y-direction, we get 
     (x´,y´) = (sx·x, sy·y) . 
 
Reflection (Mirroring) 
Reflecting a point about a coordinate axis is a special case of scaling with sx = –1 oder sy = –1. 
 
All other transformations can be obtained by consecutive application of the base transformations described 
above. All these transformations (except the translation) can also be described by transformation matrices. 
When using transformation matrices we have to describe our points as vectors in order to apply the matrix 
operations: 
 

rotation (counter-clockwise)                        scaling          reflection about x-axis                  translation 
 

█ Homogeneous Coordinates 
 

In order to be able to describe translations in matrix notation too, we use homogeneous coordinates. To each 
point we assign an additional coordinate h, where the conversion to 2D coordinates is done by dividing the 
x- and y-coordinates by h. Thus h=1 is mostly used. For a point (x,y) we now have (x,y,1), and the 
transformation matrices are extended by an additional row and column with identity values: 
 

   
                   2D rotation                                                    2D scaling                                     2D translation 
 
What is the advantage of being able to formulate all transformations in this unified matrix notation? In most 
cases, larger objects (models, images) containing a lot of points are transformed as a whole, which means 
that the same sequence of transformations is being applied to each point of those objects. This corresponds 
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to a sequential multiplication of a point P with the matrices M1, M2, M3…: P´ = M1·P,  P´´ = M2·P´,  P´´´ = 
M3·P´´, and so on. Here we can take advantage of the associativity of matrix multiplications [i.e. 
(M1·M2)·M3 = M1·(M2·M3)] to reduce the computing time massively. 
 

  Instead of     P(n) = Mn·(Mn-1·…(M3·(M2·(M1·P))))    we write     P(n)  = (Mn·Mn-1·…·M3·M2·M1)·P .  
 

Now we can precalculate the combined product M = (Mn·Mn-1·…·M3·M2·M1) and then apply this one 
single combined matrix to all points. 
 

For a better illustration we will label the basic transformation matrices as follows:  
T(tx,ty) = translation by the vector (tx,ty) 
R(θ) = rotation about the angle θ 
S(sx,sy) = scaling with the factors sx and sy. 
 

The inverse transformations of these basic transformations are: 
T–1(tx,ty) = T(–tx,–ty)                 R

–1(θ) = R(–θ)                  S–1(sx, sy) = S(1/sx, 1/sy)                  
 

From these basic transformations we can now build more complex transformations. 
As an example we examine the  
 

Scaling with respect to a point other than the origin: 
1st step = translation of the scaling center into the 
point of origin: T(–xf,–yf) 
2nd step = scaling of the object with respect to the 
point of origin: S(sx,sy) 
3rd step = translation of the object back to its 
original location: T–1(–xf,–yf) = T(xf,yf) 

 

So we obtain the generalized scaling matrix with (xf,yf) as scaling center by:  
S(xf,yf,sx,sy) = T(xf,yf)·S(sx,sy)·T(–xf,–yf) 

 
Our next example is the  
 

Reflection about an arbitrary axis y = mx+b: 
1st step = translation to move the reflection axis through the point of origin:  T(0,–b) 
2nd step = rotation to align the reflection axis with e.g. the x-axis: R(-θ)   [m = tan θ] 
3rd step = reflection about the x-axis: S(1,–1) 
4th step = rotation back to the original angle: R–1(–θ) = R(θ) 
5th step = translation back to move the reflection axis to its original location: T–1(0,–b) = T(0,b) 

 

So the generalized matrix for reflection about the axis y = mx+b can be obtained by:  
   X(m,b) = T(0,b)·R(θ)·S(1,–1)·R(-θ)·T(0,–b) 
 
 
Another important transformation is 
shearing. The simplest case, i.e. 
shearing in x-direction with fixed x-
axis has the form: 
 
  
More generally, shearing can also 
be performed along any line 
parallel to a coordinate axis, which 
would e.g. in y-direction look like 
this: 
 
 
Of course, also here we can deduce the general matrix for a 
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shearing transformation not parallel to any coordinate axis: First rotation to axis-parallel orientation, then 
shearing, then rotation back to original orientation. 
 
Also the general window-viewport transformation from chapter “2D-Viewing” can easily be described by 
transformation matrices. The used operations are: translation of one coordinate origin into another, rotation 
of the viewport into the axis-directions of the window and scaling along the axes. But in contrast to the 
combined transformations examined above, the back-translation and back-rotation are omitted here. 
 
Affine Transformations 
All transformations mentioned so far are affine transformations, which means that the coordinates can be 
converted into each other by linear functions plus a translation term. Affine mappings conserve co-linearity, 
i.e. 3 points lying on a common line before the transformation also lie on a common line afterwards, and 
proportionality of distances along a straight line, i.e. relations of distances on a line are preserved. 
Furthermore, parallel lines are always mapped to parallel lines, and finite points stay finite. All affine 
transformations (including the shearing!) can be obtained from a combination of the basic translation-, 
rotation- and scale-transformations. Furthermore, affine transformations which only contain rotation, 
translation and reflection are distance- and angle-preserving. 
 

█ 3D Transformations 
 
All concepts from 2D can easily be extended to 3D. Again a homogeneous component is required in order 
to gain 4x4 matrices that can be applied to 4-dimensional vectors. Later we will see that projections can be 
described by 4x4 matrices too.  
 

In the following we list the most important 3D transformations: 
 

 
            3D translation                             3D scaling                  reflection about the yz-          xz-            xy-plane               
 

 
3D rotation about x-axis                      3D rotation about y-axis                         3D rotation about z-axis           

 
We label these basic 3D transformation matrices as follows:  

T(tx,ty,tz) = translation by the vector (tx,ty,tz) 
Rx(θ) = rotation through the angle θ about the x-axis (y- and z-axis analogously) 
S(sx,sy,sz) = scaling by the factors sx, sy and sz. 

 
As an example for a more complex transformation we will deduce a 
 

Rotation through an angle θ about an arbitrary axis in 3D space 
Let the axis be defined by a point P1(x1,y1,z1) and a direction vector u.  
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1st step = translate the point P1 into the point of origin:  

T(-x1,-y1,-z1) 
2nd step = rotate vector u into the z-axis 
   2a. rotate vector u about the x-axis into the xz-plane: Rx(α) 
 Let u = (a,b,c), then u´=(0,b,c) is the projection of u onto  

the yz-plane. The rotation angle α about the x-axis can 
be obtained from cos α = c/d with d= √(b²+c²) 

   2b. rotate vector u about the y-axis into the z-axis: Ry(β) 
 The rotation angle β about the y-axis is calculated from cos β = d (respectively sin β = -a) 
3rd step = perform rotation through θ about the z-axis: Rz(θ) 
4th step = rotate vector u back into its original orientation: first Ry(-β), then Rx(-α) 
5th step = translate point P1 back to its original position: T(x1,y1,z1) 
 

So the resulting matrix can be calculated as follows: 
 

R(θ) = T–1(-x1,-y1,-z1)·Rx
–1(α)·Ry

–1(β)·Rz(θ)·Ry(β)·Rx(α)·T(-x1,-y1,-z1) = 
        =  T(x1,y1,z1)·Rx(-α)·Ry(-β)·Rz(θ)·Ry(β)·Rx(α)·T(-x1,-y1,-z1) 

 
A shearing in 3D can also be depicted easily: 
 

A shearing parallel to the xy-plane with 
the parameters a in x-direction and b in y-
direction is calculated by 
 
 
 
 
 
 
 
A shearing along a fixed plane other than one of the principal planes of the 
coordinate system can also be deduced easily. 
 
 


